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SADDLEPOINT OPTIMALITY IN DIFFERENTIAL GAMES

INTRODUCTION

Let the strategy of the minimizing player be p and that of the maximizing player be
e. Consider the question, What class of strategies e is to oppose a strategy, say p*, when
p* is asserted to result in "optimum" performance for the minimizing player? As Isaacs
(11 illustrates, this class must include all representable actions of the maximizing player.
Of course, it suffices to include all strategies e that are "playable" with p* at arbitrary
points of the state (playing) space. But, is it enough to include only those strategies e
that are playable with p* on the entire state space? In this report we address this ques-
tion and show under what conditions the answer is affirmative. In addition, a simple
game is discussed which illustrates that the affirmative is not universal for all games.

The question does not arise in differential games where it is assumed a priori that all
strategy pairs are "playable;" [2,3]. In general, this assumption is invalid for differential
games where there are state constraints and/or a target set that is a function of the state
variables other than time E4,5]. Even in games of prescribed duration or in pursuit-
evasion games where capture time is optimized, one cannot guarantee the "playability"
of all strategy pairs unless certain assumptions are made on the dynamics of the game;
e.g., see Varaiya [6]. Consequently, our question is posed for the large class of games
where not all strategy pairs are necessarily playable. We say that a strategy pair (pn, e*)
is optimal of Type I iff it is a saddlepoint with respect to all pairs (p*, e) and (p, e*) that
are playable on at least one point of the state space. This is a pointwise type of optimality.
We say that a strategy pair (p*, e*) is optimal of Type II iff it is a saddlepoint with
respect to all pairs (p*, e) and (p, e*) that are playable over the entire state space. This
i a Iobel type of op+i.nf+y, WiM, nhis +ai.v^n-on-r a-- our -e ; ns t-reph A as, nT

optimality of Type II equivalent to that of Type I?

In the next section a family of games is defined in which the admissible strategies
are Borel measurable. The pointwise and global definitions of saddlepoint optimality are
then given, and a theorem asserting the equivalence between these two types for the given
family of games is proved. A closure property similar to that introduced in another paper [7]
is described. This is a property on the class of admissible strategies; i.e., a function formed
in a certain way from any two members of the admissible class is also admissible. It is
pointed out that this closure nronertv is a sufficient condition for eouivaence in agneral

games. A game example in which neither the closure property nor the equivalence holds
is analyzed in the last section.

DEFINITION OF TWO-PERSON ZERO-SUM DIFFERENTIAL GAMES

Consider a differential game with state equations

SC = fix, u, ) x E En, u E Er, u EE (1)
Manuscript submitted May 17, 1974.
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STALFORD AND LEITMANN

where f is a Borel-measurable function mapping En x Er x E8 into En. The playing space
X is a Lebesgue-measurable subset of En. The target 0 is a closed set contained in the
closure of X.

The two players, one the minimizer and the other the maximizer, choose the values
of u and v, respectively. Let U and V be compact subsets of Er and E$, respectively.
Define the two spaces of functions P and E by

P = p:EP. U] p is Borel measurable 1 (2)

E = fe:E' - VI e is Borel measurable I . (3)

The spaces P and E constitute the most general class of strategies considered herein from
which admissible strategies are defined. Because the strategies of the players have X as
their domain rather than En, we define the sets of admissible strategies Y and ; as

{ip:X-tUj ap C P 3 FP X =p} (4)

= {e:X - VI 3 e C E De 1IX = I (5)

where the notation p1 IX p means that p1(x) = p(x) for all x X; i.e., p is the
restriction of P, to X. An analogous meaning attaches to el IX = e.

Let x0 C X. A pair (p, e) with p E and e C e is a playable strategy pair at xD
if it generates at least one terminating trajectory 0 satisfying

0(t) = X0 + ftmO(r),P(r))) dr Vt E [totfI (6)

where 4'(t) C X for all t e [to, tf) and where tf is the first time for which 0(tf) C .
Let if (x0 ) denote the set of all playable strategy pairs at the point xO. Define

i(X) = fli ^f. .7)

The set if (X) is the set of all strategy pairs that are playable at every initial point of the
playing space. We assume that i(X) is nonempty.

Let xO E X. Define

xo) = {p CE 1 3e EC 3 (p,e)isplayableatxO}

(xO) = {e G 3p ??Q,,e)isplayableatx 0 }.

For each e E &ffx0 ), we define

j (e, xo) = {p C p (xo) (p, e) is playable at xi I ()
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and for each p E 5 (x0 ), we define

Kt~xr - { ' ixd'i (nolispnlavableatx- 1. (9)
,-I l~- 1 L'- V'VOI Xi~' _1-- -- ---- U I

The setT (x0 ) is the largest set of strategies from which the minimizer is permitted to
choose when the initial state is x0. If the maximizer plays e E $(x 0 ) for the initial state
x 0 , then the minimizer can only choose from the smaller space T(e, x0 ). Observe that

? (xo) = U Y(e, x 0 )

e (X 0)

An analogous statement holds for & (x0 ). Furthermore, we make the following definitions
for each e C F (xo) and each p GE Sxo), respectively:

T(e, X) = fl (ee, x) (10)

Sl (113 n &(,x.
x0 CX

If the set T(e, X) is to be nonempty, it follows necessarily that e must have a playable
mate at each x0 e X and that it must have at least the same such mate for all x0 C X.
An analogous statement holds for 6(p, X).

Let x0 F X and (p, e) Ce (xO). We define T(xo; p, e) to be the set of all solutions
,t -r ./ -- l~e1 tLe -- I-~ -I., . T -4* A a_ rtV_ . - I

v 01 mq. ti) emanating frorn x0 ancd due Lo ltAe sLti4Cy jika IA, e). Lets 0' '- 'V'O j e).

A real number denoted by V(xo; p, e, 0) is associated with the quadruple 1x0 , p, e, f } by

tf

V(x 0 ;P, e, r) = If t (0(r),p((T)), e(0(r))) dr (12)
Jto

where fo is a real-value, bounded, Borel-measurable function with domain En x Er x Es.
For each x0 E X, the minimizer desires to minimize the number defined by Eq. (12),
while the maximizer wants to maximize it.

The concept of optimality for this game is explored in the next section.

POINTWISE AND GLOBAL DEFINITIONS OF SADDLEPOINT OPTIMALITY

In this section we define two types of saddlepoint conditions of optimality. The
first one, Type i, is termed pointwise because a candidate strategy pair for optimality is
compared at each point of the playing space with all strategy pairs that are playable at
that point. In Type II, such a candidate pair is compared only with those strategy pairs
that are playable over the entire state space, hence the term global While these two types
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STALFORD AND LEITMANN

are equivalent (Theorem 1 in the next section) for Borel strategies, they are not necessarily
so for other classes of strategies (as established by the exanple in the Discussion section).
These two tvnpa nf sMddlepoint ontimality are rh1finc.A ir fAlnwe

Saddlepoint Optiniality I. A strategy pair (p*, e*) is optimal iff it belongs to 5(X)
and, for all x0 C X and for all 0* T(x0 ; p*, e*), the following two inequalities are met:

V(xo, ep tt*) • Vax0;p, eq, 5) VP E T(e*, x0), 0 G T(xo;p, e*) (13)

V(x 0 p*te,0) < V(xo; p*e*t*) Ve E &(p*,x0 ), - w E T(x 0;p*e). (14)

SadAIePnoint. Opntnimalt 1 A s-ategy pair r e* (C k nn1+mai Ifif -+ halanna +n 9
and, for all x0 C X and for all 0* C T(x; p*9 e*), the following two inequalities are met:

V(xo;p*,e*, 0*) < V(xo;pe*, 0) Vp EC T(etX)\ V E T(x0;p,e*) (15)

V(xo; p*, e) < V(xo;pe*,,e4*) Ve NpX), V C T(xo;pp'e). (16)

The strategies p and e as arguments in Eqs. (15) and (16) do not depend on the initial
state for their playability; those in Eqs. (13) and (14) do. Thus the saddlepoint optimality
O.n L ME -u oIILyCLJ a '.AAUUIUiaVt 0AVLr PaU ip , tsflul % up itnlialauy Wiw SUaawgY paui"
from a considerably smaller class than that of Type I. Hence it is of interest to show under
what conditions the two types are equivalent with respect to proclaiming the same candidates
to be optimal. By way of Lemma 1 of the next section we show that these two types are
equivalent for the game as formulated in the preceding section. Recall that the Borel
strategies form the admissible strategies of the players. This Borel class of strategies
satisfies a certain closure property which is discussed in the final section. This property of
a set being "closed" provides a sufficient condition for the equivalence of the two types of
saddlepoint optimality. An example is discussed in which the closure property fails to
hold and where, indeed, a candidate is optimal of Type I1 but not of Type 1.

A THEOREM OF EQUWALENCE

The following lemma is the basis for establishing the equivalence between the two types
of saddlepoint optimality.

Lemma 1. Let x0 E X. If (p¶, e*) and (p, e*) are playable at x0 and if 0 E Tfx0 ; ep
then the strategy pair (pl, e*) is playable at x0 where p1,: X -b U is defined by{ p(x) Vx C { k(t) t E [to, t1) where (to, tf I is the interval of definition of k
pi(x) - (17)

p l J4.) UL aiittiic .x 

Furthermore, (p1 , e*) is playable over the entire playing space provided (*, e*) is.

4



NRL REPORT 7766

Proof Let A = {O4t):t C [to, tf] I}. The set A is a compact subset of En because 0 is
absolutely continuous and its domain is compact. The continuous image of a compact
set by a continuous function is compact [8]; thus, A is a Borel-measurable set.

According to the definitions of ? and 6, there exist 9, f E P, and e { E such
that

p (x) = 9(x) (18)

p(x) =(x), (19)

e*(x) =*(x) (20)

for all x eA X. Define l1 :En - U as

[A(x) Vx E A

fi *(X) Vx E En - A. (21)

The function A1 is Borel measurable because 9* and $ are Borel measurable and A is a
Borel-measurable set. Consequently; p1 C ? because p1 is the restriction of P1 to X.
Because p (x) = p(x) at all points x along the trajectory X, it follows that 0 is a terminat-
ing trajectory for the pair (pl, e*). Therefore, (p1, e*) is a playable strategy pair at xo.

Suppose that (p, e*) belongs to T(X). We want to show that (p1 , e*) belongs to
r (X). We have already shown that (p71 , e*) belongs to jf(xo). Suppose to the contrary
that (p1n e*) q SIfX). Then there is some x G X with x * x0 such that (p1, e*) X T(x}
that is, the pair (p1 , e*) does not provide a terminating trajectory emanating from x. It
suffices then to demonstrate that (.pl e*) does, in fact, induce a terminating trajectory,
say 01.

Let 0* E T(x; pt e*). Let [t, tf*] be the time domain of 0*, where t corresponds
to the state x if time is a component of the state variable, say xn = t. Let t0 be the -
smallest time contained in It, t4] such that 0*(t0 ) C A. If no such t0 exists, then 0t C
T(x; Pi, e*) because pl(x) = p (x) for all x X A. Define 1 = 0. The nonexistence of
t0 contradicts, therefore, the assumption that (p1 , e*) X 5f(x).

Hence, suppose ta exists. Let x. = 0* (ta). Now let tb be the maximum time such
that @(tb) = x0. Note that if time is a component of the state variable, then tb = ta0 We
will consider this case first and afterward the case in which time does not enter explicitly
into the dynamics; i.e., an autonomous process.

If tb = t0, define the absolutely continuous function 01 by

= *((r) Vr E [t, t (I

,(r) Vr G (t, tf] I

5



STALFORD AND LEITMANN

Observe that 4? satisfies Eq. (6) for the strategy pair (pl. e*) where x is the initial state.
Again we have shown that (pi, e*) F J(x).

Suppose the process is autonomous. A trivial but important property of such processes
is that if 0* is a solution of Eq. (6), then so is 4,, 19], where

0e00 = 0*(Kr + c) r F ft - c,t* - C] (23)

and where c is any real number. Let

c = t - tb (24)

Note that 0?_ has the time domain ft - t0 + tb, tf - t + tb] and that 0,(tb) =(t 0) =X

Define

00e(7) VT G t t - C, tb]
01 (r) = t 25)

O(T) YT C (tb, tf] -

Thus, ¾1 F Tjx; pl, e*) and (pl, e*) C J_(x), concluding the proof of the lemma

Interchanging the roles of p and e in this lemma yields an analogous result for con-
structing a playable strategy pair (,p* el) from two other playable strategy pairs (*, e*)
and (1*, e). This observation together with the above lemma is used in the proof of the
following theorem.

Theorem. A strategy pair (p*t e*) that is playabe over all of the playing space is
a saddlepoint strategy of Type I iff it is a saddlepoint strategy of Type L

Proof, Let (*, e*) CE f(AX) be optimal according to the saddlepoint optimality criterion
of Type I. From the definitions of Y(e*, X) and &pD*, X) in Eqs. (10) and (11),
it follows from inspection of Eqs. (13) to (16) that (pt e*) is optimal of Type IL.

Conversely, suppose (pt e*) satisfies the saddlepoint optimality criterion of Type I1.
Suppose further that (pt e*) is not optimal of Type I. This implies that there exist x0 E X,
p E e*, x0), * E CT(x0 , p*, e*), and C T(x0 ; Ape*) such that

V(xo;p* et 0*) > V(x 0;p, et )4; (26)'

or there exist, in place of p and k, e C &t*, x0 ) and 4 FE T(xo; p*, e) such that

V(xo;pt e, 9) > V(XO;p* e, ) . (27)

We show that (26) cannot hold, It can be shown similarly that (27) cannot hold. Using
the definition of (17), we note that 95 E T(xo; p1, e$) and that

V(X0 ;p, e 7t ) = V(X0;p1, et 44). (28)

6
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According to Lemma 1, (p1, e*) E t5(X). Thus, from (15) we have

V(xo;p*, e*, 0*) < V(x0;pl, e*, 9) . (29)

Inequality (29) together with (28) contradicts (26), concluding the proof.

DISCUSSION

Let S denote a set of strategies a :En -+ W where W is compact in Em. Consider the
time interval [0, 17 and let TR( [O, 11, En) denote a set of trajectories with domain [0, 1)
and range in En. Let AC([O, 1], En] represent the set of all absolutely continuous func-
tions from [0, 1] into Enl. Because all solutions of ordinary differential equations are
absolutely continuous and trajectories are such solutions, it follows necessarily that

TR([o, 11, En) C AC([0 11, En).

Let 9 belong to TR([O, 1], En) and let 0([O, 1]) denote the image of [0, 1] under the
mapping 9.

Definition. The set of strategies S is called closed with respect to TR([O, 1], En) iff for
every o, a* F S and for every 0 F TR([O, 1], En), the function a, also belongs to S, where

Fa(x) VX E 0950,11)
al(x) =- (30)

a* a(X) Vx C En - 9([0, 11).

If- in the ahnve definitionn TR(F0o 11], En) enus1 ACIFO- i En), then .9 is said to he
closed. The property of a space S of strategies satisfying (30) is called a property of
closure. It is shown in the proof of Lemma 1 that the set of Borel-measurable strategies
is closed. It is this property of P and E being closed that led to the equivalence between
the two types of saddlepoint optimality. If this closure property does not hold, it is con-
ceivable that the two types of optimality could disagree on the optimality of a particular
candidate in some game. True, if a playable strategy pair is optimal according to Type I,
then it is also optimal according to Type II. The question is then whether it is possible for
a strategy pair (p*, e*) to be optimal of Type II but not of Type I. This can only happen
if (15) and (16) are met and if there are Xn G X, A* F T(xo, p*, e*), p F $(e*, x0 ), and
9 E T(xo; p, e*) such that

V(xo;p*, e*, 95*) > V(xo;p, e*, 9), (31)

or, in place of P and A, there are e EE F(p*, x0) and ¢ G T(xo; p*, e) such that

V(xo;p*,e,rk) > V(xo;p*,e *,9*). (32)

A game in which (15), (16), and (32) hold is illustrated by the following simple
example: Let

X1 = U, a F U {-1, (33)

X2 = v, u G V= {-1,0 (34)

7
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and let the integrand of the payoff, Eq. (12), be given by

0 xl, X2 , U, v) lul - v (35)

Define

01 = (X E E2X2F = 0andX 1 < 0 1

92 = {x C E2 :X 2 = landX 1 >Ž O),

03 = Fx E E2 :xI = Oand0 < x2 < ,

= = (x C E2 X2 > OandxI < 0 ,

X2 = {x C E2 :X2 > landx 1 > 01

where x = (xI, X2 ). The playing space and target set are

X = X1 U X2

0 = 01 U 02 U 03.

In the game under discussion, we restrict the sets of admissible strategies, P and E, to the
class of constants. Thus, and 6 each contains only two strategies; namely,

$ contains p(x) = i = -t I

6 containsei(x) = i, j = -1, O

for all x C X

The strategy pairs (p-1, e&1) and (pi e-1 ) are the only pairs that are playable on the
entire playing space X. We show subsequently that (pl. e. 1) is optimal of Type II but
not of Type I. In particular, we show that (27) holds.

Define

B1 = {x E X1I < x 2 - 1< x1 4,

B2 = {x EF XXI K 2 - 14,

B3 = {x F X120 C x2 < x2 <• xI + 11.

For xO = (X1 t0 ), x 2 t0 )), observe that

2[X2 (tO) - 1] Co E B1
Vi; P-1 _) = (3)6){ < 2( 0 ) Vx0 E B2 U B3,

where the trajectory has been deleted as an argument of V because all solutions of Eqst
(33) and (84) are unique in this game.

8
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Write

C1 = {x E XxIx + X2 > 1},

C2 = {x E X1X1 + X2 < 01,

C3 = {X C X10 < XI + X2 < 14-

Note that

F2Ix2 o) - 1] VxO E C1 ,
V(xo;pl, el}) 2x2 (to) VXO E C2 (37)

1J~~1t~o) VX0 E C3

One can verify that

V(X0 ;pI&e_) < V(xo;ip_1 e..e1 ) VXO E X (38)

and that, for all x0 contained in the interior of B2 n C1,

V(xo;pl,e.. 1 ) < V(xO;p_1 ,e_ 1). (39)

The inequality (38) implies (15) is met for the candidate (P1 , e-.) because (-1, e&i)
is the only other member of 5(e-,, X). The pair (p 1,, et1) is not optimal of Type II
because (39) implies that (15) fails for this strategy.

The inequality (16) is trivially met for the candidate (pl, e&1) because e&1 is the
unique member of 8(p 1 , X). Thus, the pair (P1I e..) is optimal of Type II and as such it
is unique.

To shnw that tn. e - I ik not Ontimnal of Tuna T. onndrler 4-_ C= (A, 1 S Ralpr.t ann

x} such that 41 < -V2. Consider the effect of the strategy eo which is playable with
p1 at the initial state x = (X1, X2). Note that

V(i;pl, eo) = -X1.

Because -41 > 2i2, we have

V(*;pI, eO) >2k 2 . (40)

Because x E C2, it follows from (37) together with (40) that

V(*; pl, eo) > V(ie; P1, e 1 )* (41)

This is the restatement of (32) for this game example. Therefore, the playable strategy
pair (PI, e-l) is not optimal of Type I even though it is optimal of Type II.

Only constant strategies were admissible in this example, resulting in the nonequivalence
of oDtimalitv TvDes I and II. For such stratevies the elosure nronertv dors nnt hold AR
shown by Theorem 1, the set of Borel strategies leads to an equivalence between the two

9
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optimality types, and these strategies satisfy the closure property. Nevertheless, the
closure property, while being a sufficient condition for this equivalence, is by no means
a necessary condition.
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